Hilbert modules and tensor products of operator spaces

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hilbert Modules and Tensor Products of Operator Spaces

The classical identification of the predual of B(H) (the algebra of all bounded operators on a Hilbert space H) with the projective operator space tensor product H⊗̂H is extended to the context of Hilbert modules over commutative von Neumann algebras. Each bounded module homomorphism b between Hilbert modules over a general C∗-algebra is shown to be completely bounded with ‖b‖cb = ‖b‖. The so ca...

متن کامل

Frames and bases in tensor products of Hilbert spaces and Hilbert C∗-modules

Abstract. In this article, we study tensor product of Hilbert C∗-modules and Hilbert spaces. We show that if E is a Hilbert A-module and F is a Hilbert B-module, then tensor product of frames (orthonormal bases) for E and F produce frames (orthonormal bases) for Hilbert A⊗B-module E ⊗F , and we get more results. For Hilbert spaces H and K, we study tensor product of frames of subspaces for H an...

متن کامل

On Tensor Products of Operator Modules

The injective tensor product of normal representable bimodules over von Neumann algebras is shown to be normal. The usual Banach module projective tensor product of central representable bimodules over an Abelian C∗-algebra is shown to be representable. A normal version of the projective tensor product is introduced for central normal bimodules.

متن کامل

some properties of fuzzy hilbert spaces and norm of operators

in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...

15 صفحه اول

Hilbert-Schmidt operators and tensor products of Hilbert spaces

Let V ⊗HS W be the completion of V ⊗alg W in the norm defined by this inner product. V ⊗HS W is a Hilbert space; however, as Garrett shows it is not a categorical tensor product, and in fact if V and W are Hilbert spaces there is no Hilbert space that is their categorical tensor product. (We use the subscript HS because soon we will show that V ⊗HS W is isomorphic as a Hilbert space to the Hilb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Banach Center Publications

سال: 1997

ISSN: 0137-6934,1730-6299

DOI: 10.4064/-38-1-227-246